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Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. 
The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic dis-
eases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, 
dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over 
comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The 
findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an 
update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years 
and outlines developments for the coming period.
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Introduction

The Rotterdam Study was designed in the mid-1980s as a 
response to the demographic changes worldwide that were 
leading to an increase of the proportion of elderly people 
[1]. It was clear that this would result in a dramatic increase 
in the number of persons living with chronic diseases, espe-
cially those with multi-morbidity, as most diseases cluster 
at the end of life. In order to discover the causes of diseases 
and thereby identify potential targets for preventive interven-
tions one would have to study risk factors of those diseases 
[2]. A major approach to finding causes is the prospective 
follow-up study, which had proven highly effective in finding 
causes of heart disease and cancer.
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The design of the Rotterdam Study

The Rotterdam Study was designed as a prospective cohort 
study, initially comprising 7983 persons living in the 
well-defined Ommoord district in the city of Rotterdam 
in The Netherlands (78% of 10,215 invitees). They were 
all 55 years of age or over and the oldest participant at the 
start was 106 years [3]. There were no prespecified exclu-
sion criteria, meaning that all persons older than 55 years 
of age living in the area were invited to participate. The 
study started with a pilot phase in the second half of 1989. 
From January 1990 onwards participants were recruited 
for the Rotterdam Study. Figure 1 gives a diagram of the 
various cycles in the study.

In 2000, 3011 participants (out of 4472 invitees) who 
had become 55 years of age or moved into the study dis-
trict since the start of the study were added to the cohort.

In 2006, a further extension of the cohort was initiated 
in which 3932 subjects were included, aged 45–54 years, 
out of 6057 invited, living in the Ommoord district.

By the end of 2008, the Rotterdam Study therefore com-
prised 14,926 subjects aged 45 years or over [4, 5]. The 
overall response figure for all three cycles at baseline was 
72.0% (14, 926 out of 20, 744).

In summer of 2016, the recruitment of another extension 
started that targeted participants aged 40 years and over. The 
establishment of this extension is expected to be completed 
by early 2020 and to yield around 3000 new participants.

The participants were all extensively examined at study 
entry (i.e. baseline) and subsequent follow-up visits that take 
place every 3 to 6 years. They were interviewed at home 
(2 h) and then underwent an extensive set of examinations 
(a total of 5 h) in a specially built research facility in the cen-
tre of the district. These examinations focused on possible 
causes of invalidating diseases in the elderly in a clinically 
state-of-the-art manner, as far as the circumstances allowed. 
The emphasis was put on imaging (of heart, blood vessels, 
eyes, skeleton and later brain) and on collecting biospeci-
mens that enabled further in-depth molecular and genetic 
analyses.

There were follow-up visits with re-exminations from 
1990 to 1993, from 1993 to 1995, from 1997 to 1999, 
from 2000 to 2001, from 2002 to 2004, from 2004 to 
2005, from 2006 to 2008, from 2009 to 2011, from 2011 
to 2012, from 2012 to 2014, from 2014 to 2015, and from 
2015 to 2016. In summer 2016 the aforementioned fourth 
cohort was established and underwent its first visit in 
the following years. The age range for this new cohort 
is predominantly 40–55 years. From 2018–2019 the first 

Fig. 1  Diagram of examination cycles of the Rotterdam Study (RS). 
RS-I-1 refers to the baseline examination of the original cohort (pilot 
phase 07/1989–12/1989; cohort recruitment 01/1990–09/1993). RS-I- 
2, RS-I-3, RS-I-4, RS-I-5, RS-I-6, and RS-I-7 refer to re-examina-
tions of the original cohort members. RS-II-1 refers to the extension 
of the cohort with persons from the study district that had become 
55 years since the start of the study or those of 55 years or over that 
migrated into the study district. RS-II-2, RS-II-3, and RS-II-4 refer 
to re-examinations of the extension cohort. RS-III-1 refers to the 
baseline examination of all persons aged 45 years and over living in 

the study district that had not been examined already (i.e., mainly 
comprising those aged 45–60  years). RS-III-2 refers to the first re-
examination of this third cohort. Examination RS-I-4 and RS-II-2 
were conducted as one project and feature an identical research pro-
gram. Similarly, examinations RS-I-5, RS-II-3, and RS-III-2 share 
the same program items. Also, examinations RS-I-6 and RS-II-4 are 
conducted as one project. RS-IV-1 refers to the baseline visit of the 
fourth cohort, established in 2016. Re-examinations RS-II-5 and RS-
III-3 for the second and third cohort will start early 2020



485Objectives, design and main findings until 2020 from the Rotterdam Study  

1 3

cohort was re-examined for the seventh time. Re-exam-
inations for the second and third cohort will commence 
early 2020.

The participants in the Rotterdam Study are followed 
for a variety of diseases that are frequent in the elderly, 
which include but are not exclusive to coronary heart dis-
ease, heart failure and stroke, Parkinson disease, Alzhei-
mer disease and other dementias, depression and anxiety 
disorders, macular degeneration and glaucoma, COPD, 
emphysema, liver diseases, diabetes mellitus, osteoporo-
sis, dermatological diseases and cancer. In addition to the 
in-person examinations, the follow-up for these outcomes 
takes place via automated coupling of the study database 
with medical records from the general practitioners, who 
serve as gatekeepers to the Dutch health care system and 
therefore receive all relevant medical information from all 
caregivers of their patients.

The Rotterdam Study has been approved by the Medical 
Ethics Committee of the Erasmus MC (registration number 
MEC 02.1015) and by the Dutch Ministry of Health, Wel-
fare and Sport (Population Screening Act WBO, license 
number 1071272-159521-PG). The Rotterdam Study Per-
sonal Registration Data collection is filed with the Eras-
mus MC Data Protection Officer under registration number 
EMC1712001. The Rotterdam Study has been entered into 
the Netherlands National Trial Register (NTR; www.trial 
regis ter.nl) and into the WHO International Clinical Trials 
Registry Platform (ICTRP; www.who.int/ictrp /netwo rk/
prima ry/en/) under shared catalogue number NTR6831. 
All participants provided written informed consent to par-
ticipate in the study and to have their information obtained 
from treating physicians.

For recent relevant EJE references see [6–29].

Cancer and related diseases

Overall aim and focus area

The age-adjusted incidence of many common cancers has 
increased in European populations over the past two dec-
ades. Moreover, cancer has taken over the role of most 
important cause of death in many developed countries. 
Therefore, more research with regard to cancer is neces-
sary, not only to investigate its risk factors but also its 
treatment and determinants of survival. More and more, 
cancer is becoming a chronic disease which has an impor-
tant place in a community-dwelling population of middle-
aged and older individuals such as the Rotterdam Study. 
In the Rotterdam Study [RS], cancers are analysed as a 
clinical endpoint but also as a determinant or co-factor of 
other clinical endpoints.

Key methods and data collection

Within the RS, cancer cases are registered via continuous 
follow-up of medical records from general practitioners. 
Furthermore, linkage with the Dutch Hospital Data (LMR) 
was established around 1998. The Dutch Hospital Data is 
a register which captures the main discharge diagnosis for 
all nationwide hospital admissions. Second, the Rotterdam 
Study was linked to PALGA, a local registry of histo- and 
cytopathology which captures all pathology reports in the 
region of the Rotterdam Study. In 2018, a linkage to the 
Netherlands Comprehensive Cancer Organisation (NKR) 
was established which will be updated every four years. The 
NKR is a nationwide registry with information on cancer 
diagnoses since 1989. This linkage gives additional informa-
tion on first initiated treatment after diagnosis.

All potential cancer diagnoses are scrutinized on the basis 
of all available medical information, and independently clas-
sified by two physicians. Classification is according to the 
International Classification of Diseases and Related Health 
Problems, 10th revision (ICD-10) and the International 
Classification of Primary Care, 2nd edition (ICPC-2). The 
level of certainty of the diagnosis is established as: certain 
(pathology confirmed), probable (clinical diagnosis based 
on e.g. a mass on radiologic examination and/or biomark-
ers) or possible (e.g. an uncircumscribed mass by physical 
examination or a clinical presentation with painless jaundice 
and weight loss). The date of cancer diagnosis is registered 
as the date of the pathology report, or the date of the hospital 
admission if no pathology report was available. In case of 
disagreement, consensus is sought through consultation of 
a specialist in internal medicine.

Main findings in the last 3 years

That population-based studies may be complementary to 
cancer registries follows from the underestimation of some 
cancers—such as pancreatic cancer—in registries [30]. We 
identified glutamine and histidine as biomarkers of potential 
biological interest to signal the presence of pancreatic cancer 
in an early stage [31]. In the Rotterdam Study, the focus of can-
cer research is on etiology, but also on prognosis. Furthermore, 
cancer may be a determinant or relevant co-factor in other RS-
studies [32]. With regard to etiology, research has been done 
on diet [33–36] or lifestyle such as smoking [37, 38] as a risk 
factor, and laboratory assessments, for example, inflammatory 
markers in association with cancer [31, 39–41]. Furthermore, 
the association between cognition and cancer was studied 
[42, 43]. We have confirmed the positive association between 
a high baseline total cholesterol level and colorectal cancer 
(CRC) during follow-up, an association which was modified 
by dietary polyunsaturated fatty acids [35]. In individuals with 
a BMI below 25, a relatively high intake of glutamic acid was 

http://www.trialregister.nl
http://www.trialregister.nl
http://www.who.int/ictrp/network/primary/en/
http://www.who.int/ictrp/network/primary/en/
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associated with a reduced risk of CRC [34]. Also adherence to 
14 important items of the Dutch dietary guidelines was associ-
ated with a significantly lower risk of CRC [44]. In the Con-
sortium on Health and Ageing (CHANCES), it was described 
that smoking, considerably advances, and cessation delays, 
the prognosis of CRC [37], but also of other cancers [38]. In 
addition, we found that dietary egg intake was associated with 
a higher risk of postmenopausal breast cancer [33] whereas 
a higher dietary zinc and iron intake were associated with a 
reduced risk of lung cancer [36]. With regard to laboratory 
assessments, we found that higher thyroid free T4 levels are 
significantly associated with an increased risk of any solid, 
lung, and breast cancer [45]. Also, inflammation, as measured 
by the systemic inflammation index [SII] was associated with 
a 30% higher risk of developing a solid cancer, making a high 
SII a strong and independent risk indicator for developing a 
solid cancer [40]. To enhance the usefulness of such markers, 
we assessed reference values for white blood cell based inflam-
matory markers [46].

Future perspectives

In the near future, we will focus on 2 research topics. First, 
etiologically, we will investigate the role of drug use on the 
occurrence of cancer, especially use of long-term treatment 
such as calcium antagonists [47]. Furthermore, we will 
extend our investigation on the role of genetic determinants, 
diet and (inflammatory) biomarkers and the risk of cancer. 
Second, we will be elaborating on the potential prognostic 
effects of diet and inflammation after cancer diagnosis. The 
role of drug use as potential effect modifier on the survival 
of cancer will be investigated as well.

For additional EJE references please see [48–80].

Cardiometabolic diseases

Overall aim and focus areas

Research on the epidemiology of cardiometabolic disorders 
focuses on the etiology, prediction, and prognosis of cardio-
metabolic disorders including coronary heart disease (CHD), 
heart failure (HF), atrial fibrillation (AF), type 2 diabetes 
(T2D), and metabolic syndrome. This research line aims to 
provide sex- and gender-specific insights across the spec-
trum of cardiometabolic disorders.

Key methods and data collection

Clinical follow‑up

Information on clinical cardiometabolic outcomes is col-
lected through an automated follow-up system which 
involves linkage of the study base to digital medical records 

from general practitioners in the study area and subsequent 
collection of letters of medical specialists and discharge 
reports in case of hospitalization. Clinical cardiometabolic 
outcomes are adjudicated according to established guideline-
based definitions by study physicians and medical specialists 
[81].

Non‑invasive measures of atherosclerosis

At baseline and follow-up examinations, ultrasonographic 
assessments of carotid intima-media thickness (cIMT) 
and plaques, measurements of carotid–femoral pulse wave 
velocity (PWV), ankle-brachial index, abdominal aortic 
calcification (X-rays of the lumbar spine), thoracic aortic 
diameters (ultrasound), echocardiographic measurements 
of structural and functional left and right heart parameters, 
and resting electrocardiogram are performed. Calcification 
in the coronary arteries, aortic arch, intra- and extra-cranial 
carotid arteries were assessed using CT. In case of carotid 
wall thickening on ultrasound, carotid plaque components 
were assessed using MRI.

Among 2000 participants with available EBT and carotid 
ultrasound, both proton Nuclear Magnetic Resonance (1H 
NMR) and Mass Spectrometry (MS) for metabolic profiling 
has been performed.

Sex‑ and gender‑specific data

Questionnaire data to evaluate the impact of specific peri-
ods of potential vulnerability across a woman’s lifespan; 
menarche, pregnancy, reproductive lifespan characteristics 
and menopausal transition as well as measurements of sex 
hormone levels have been collected.

Main results in the last 3 years

Atherosclerosis is a complex multifactorial condition involv-
ing multiple pathways influenced by both genetic and envi-
ronmental factors. We investigated the role of inflammatory, 
oxidative stress, and hemostasis markers on cardiometabolic 
disorders. We found EN-RAGE as a novel inflammatory 
marker for pre-diabetes and for CHD [82, 83], IL17 for 
incident T2D and IL13 for pre-diabetes, incident T2D and 
insulin therapy [83]. We identified novel epigenetic corre-
lates of circulating TNF-α and linked these loci to CHD risk 
[84]. We reported serum apoCIII levels, apoCIII-to-apoA1 
ratio, visceral adiposity index, lipid accumulation product, 
the product of triacylglycerol and glucose to be associated 
with incident T2D, in particular in women [85, 86]. Mende-
lian randomization (MR) did not support the causal role of 
serum gamma-glutamyl transferase, as a marker of oxidative 
stress, on T2D risk [87]. ADAMTS13, a novel homeostatic 
factor, was an independent risk factor for incident T2D and 
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CVD [88–91]. Our MR study did not support a large causal 
effect of fibrinogen on CHD [92].

Besides contribution to the global genetic discovery for 
CHD, HF, AF, and T2D [93–95], we also showed the biolog-
ical interactions between genetic variants driving differential 
methylation and gene expression for T2D and highlighted 
the role of differential methylation in the crosstalk between 
adaptive immune system and glucose homeostasis [96]. We 
provided insights into potential biological mechanisms con-
necting tobacco smoking to excess risk of T2D and showed 
differential association of tobacco smoking with DNA meth-
ylation of the diabetes genes [97]. Among diabetic individ-
uals, we identified 26 blood metabolomic measures to be 
associated with insufficient glycemic control, the strongest 
association was with glutamine [98]. Taking into account 
smoking behavior, multiple new loci for pulse pressure, 
mean arterial pressure, and blood pressure were identified, 
highlighting the importance of accounting for lifestyle fac-
tors and shared pathophysiology between cardiometabolic 
and addiction traits [99, 100]. We, however, did not find 
evidence of genetic interactions with body mass index on AF 
risk [101]. Despite similar lifetime risks of CVD at age 55 
for men and women, men were more likely to develop CHD 
as a first event and women more likely to have stroke or 
HF [102]. Moreover, atherosclerosis (i.e. CAC) was present 
in approximately one-third of women categorized as being 
at low CVD risk based on the recent American guidelines 
[103]. CAC presence among low-risk women was associated 
with an increased risk of CVD [103]. Only 9.3% of men and 
10.4% of women in the Rotterdam Study reached optimal 
cardiovascular health which was associated with sex steroids 
and sex hormone-binding globulin (SHBG) levels [104]. 
Total estradiol levels were also associated with presence of 
vulnerable carotid plaque and higher stroke risk in women 
[105]. Low levels of SHBG and high levels of total estradiol 
were associated with increased risk of T2D in women and 
higher serum dehydroepiandrosterone levels were associated 
with lower risk of T2D in both women and men [106, 107]. 
Among high-risk women with a history of polycystic ovary 
syndrome or premature ovarian insufficiency, we affirmed 
the potent impact of androgens on cardiometabolic features 
[108–110].

Early onset of natural menopause was an independent 
marker for T2D in women [111]. Women who experienced 
early menopause lived less long and spent fewer years with-
out T2D than women who experienced normal or late meno-
pause [112]. Moreover, genetic variants associated with ear-
lier age at menopause increased the risk of CVD in women 
[113]. Furthermore, we showed that genetic variants associ-
ated with earlier age at natural menopause were associated 
with increased CVD risk in women, but not men, suggesting 
sex-specific genetic effects on CVD risk. Regarding the life-
style factors, we further showed that smoking among women 

and metabolic factors (T2D and body mass index) among 
men had larger deleterious associations with longitudinal 
changes in left ventricular cardiac function [114].

We found lower levels of healthy ageing score (HAS) and 
sharper age-related decline in HAS among women compared 
to men [115]. Late first and last reproduction were associated 
with lower and a longer maternal lifespan, post-maternal fer-
tile lifespan, and endogenous estrogen exposure were associ-
ated with higher all-cause mortality rates [116].

At age 55 years, the remaining lifetime risks for CHD, 
stroke, HF, AF, and T2D were 27.2%, 22.8%, 14.9%, 24.8%, 
and 28.1% for men and 16.9%, 29.8%, 17.5%, 22.9%, and 
30.1% for women respectively [32, 102, 117, 118]. We fur-
ther showed the implications of the major American and 
European guidelines at population level, quantifying the 
discrepant proportions of individuals eligible for statin 
treatment [119]. Among a range of newer markers, CAC 
and NT-ProBNP provide the largest increment in CVD risk 
prediction accuracy above the traditional risk factors [120]. 
We further examined the predictive ability of CAC versus 
age and showed CAC to be an alternative marker besides age 
to better discriminate between lower and higher CHD risk 
in older adults [121]. We took part in devising the updated 
global World Health Organization (WHO) algorithms for 
CVD risk estimation [122, 123]. To allow for routine use 
of risk charts in clinical practice, we showed that the non-
laboratory-based models could predict CVD risk as accu-
rately as the laboratory-based models [124]. Incorporating 
repeated measurements of blood pressure and cholesterol 
into CVD risk prediction models slightly improved risk pre-
dictions [125]. However, employing the novel deep learn-
ing algorithms using repeated-measures data led to greater 
discriminative accuracy for identifying people at high CVD 
risk compared to Cox regression approaches [126].

Although atherosclerosis is a systemic condition, we 
found persons with migraine, compared to those without, 
had less arterial calcification in the intracranial carotid 
artery, but not in other arterial beds [127]. We also showed 
that the association of impaired kidney function and larger 
volumes of arterial calcification was partly explained by 
cardiovascular risk factors. Arterial calcification did not 
mediate the association between kidney function and CVD 
beyond cardiovascular risk factors [128].

Higher cIMT, presence of carotid plaque, greater arte-
rial stiffness, and larger volumes of epicardial fat were 
associated with higher AF incidence, indicating the role 
of atherosclerosis and arterial stiffness in AF pathogen-
esis [129, 130]. Carotid atherosclerosis was also associ-
ated with poorer hearing in older adults, suggesting that 
CVD prevention may also be beneficial for hearing loss in 
older adults [131]. Larger carotid artery diameter was also 
associated with risk of CVD, stroke, and mortality but not 
with CHD [132]. Among high-risk individuals, we showed 



488 M. A. Ikram et al.

1 3

baseline cIMT, but not cIMT change over time, to be asso-
ciated with future CVD [133]. We further characterized 
vascular ageing by increasing arterial stiffness (PWV) and 
showed that participants with healthy vascular ageing were 
at the lowest end of the PWV distribution and had up to 
14 years estimated younger biological (vascular) age than 
those with higher PWV values [134].

Active, high-dosage statin use beneficially influenced 
the composition of carotid atherosclerosis and shifted 
the composition from vulnerable plaque with a lipid core 
to more stable calcified plaque [135]. We showed both 
visual progression and regression of intra-plaque hemor-
rhage (IPH) volume during 17 months of follow-up [136], 
suggesting IPH as a dynamic process with potential for 
growth or resolution over time. Moreover, antithrombotic 
treatment related to a higher frequency of IPH in carotid 
plaques [137].

Our recent GWAs and colocalization analysis of cIMT 
and carotid plaque with vascular expression quantitative loci 
(cis-eQTLs) from relevant arterial wall and metabolic tissues 
implicated cIMT and carotid plaque loci in cardiovascular 
outcomes [138]. Our exome-wide association meta-analy-
sis demonstrated that protein-coding variants in APOB and 
APOE associate with subclinical atherosclerosis. We showed 
the first significant association for APOE ε2 with multiple 
subclinical atherosclerosis traits across multiple ethnicities, 
as well as clinical CHD [139].

We characterized serum metabolic signatures associated 
with atherosclerosis in the coronary and carotid arteries 
and subsequently their association with incident CVD. The 
metabolites associated with atherosclerosis were largely 
consistent between the coronary (CAC) and carotid (cIMT) 
beds and predominantly tagged pathways that overlap with 
known cardiovascular risk factors [140]. However, we found 
differences in metabolic association patterns of intra- and 
extra-cranial carotid beds [141].

For additional EJE references please see [142–160].

Dermatological diseases

Overall aim and focus areas

The overall aim is to study common skin characteristics and 
diseases in a population based setting. The most important 
areas of research include skin cancer including basal and 
squamous cell carcinoma’s and melanoma; understanding 
the genetics of visible traits (e.g., skin aging, skin colour, 
hair colour and structure, eyebrow colour, facial shapes etc.) 
using facial digital 3D images; distribution of microbiome 
of the face and its determinants; phlebological outcomes 
including venous ultrasound of the lower extremities.

Key methods and data collection

Participants are offered a full body skin examination by a 
dermatology trained physician. The focus of the clinical 
inspection is cutaneous (pre)malignancies, the presence of 
several inflammatory skin diseases such as atopic eczema, 
psoriasis and seborrheic eczema, and the presence of vari-
cose veins. In addition, a 3D image of the face is collected 
for subsequent computer-vision based extraction of visible 
traits, the skin colour is assessed by spectroscopy, a skin 
swab of the nasal labial fold is taken, and a screening ultra-
sound of the venous system of the legs is performed.

Main results in the last 3 years

Together with the Harvard cohorts we demonstrated for the 
first time that the genetic predisposition did not reveal new 
loci for developing multiple skin cancers [161], but based 
on clinical characteristics we developed a prognostic model 
[162]. In collaboration with other international consortia, 
the genetics of actinic keratosis, basal and squamous cell 
carcinoma, and melanoma have been further unraveled 
[163–166].

As member of different international consortia, we 
described many new and confirm previously known genes 
and performed genetic prediction studies for multiple vis-
ible traits such as male pattern baldness [167], perceived 
facial age [168], body height [169], hair color [170], hair 
structure [171], skin colour [172], eyebrow thickness [173], 
and eyebrow colour [174].

In collaboration with Unilever, several scientifically 
robust studies on different components of facial skin aging 
have been published in the last 3 years. First, we presented 
the largest population based study on the prevalence and 
determinants of facial skin aging [175]. Subsequently, 
Together with the longevity study from Leiden, we demon-
strated that skin pigmentation genes were associated with 
wrinkling of the face [176]. Recently, we observed an asso-
ciation between a healthy diet and less facial wrinkling in 
women [177]. In a data driven analyses, we distinguished 
two different phenotypes of skin aging [178].

Seborrhoic dermatitis is a common skin condition (14% 
of participants of RS had physician diagnosed seborrheic 
dermatitis), but poorly understood. We demonstrated that 
men and especially those with lighter and dry skin were at 
risk of having seborrheic dermatitis [179]. A genetic analy-
ses suggested that two loci play a role in the development of 
this disease [180].

Future perspectives

The first batch of almost 1000 samples of the facial microbi-
ome have been analysed. The distriubtion of the cutanoues 
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micobiome in a large cohort will be studied as well as its 
relationship to other disease conditions. 3D facial images 
are continued to be collected to increase the power of future 
genetic studies.

For additional EJE references please see [181].

Endocrine and metabolic diseases

Overall aim and focus areas

The research line Internal Medicine focuses on diseases of 
internal organs, and how these diseases contribute to age 
related disorders such as cardiovascular disease and demen-
tia. The main aim is to unravel mechanisms contributing to 
disease, thereby allowing new strategies for prevention, early 
detection and treatment.

Specific focus areas are hormone disorders (particularly 
thyroid disease) and the contribution of hormones to healthy 
aging and the development of age-related disease; kidney 
disease, prevention of renal insufficiency and the contribu-
tion of low kidney function to cerebrovascular diseases; 
immunity and the influence of the immune system on age-
related disease; infections and how endogenous bacterial 
flora protect or contribute to disease development.

Key methods and data collection

Serum and urinary analyses are the core business of the 
research line Internal Medicine:

• Hormone disorders: We are currently measuring a full 
profile of different thyroid hormone metabolites in a sin-
gle run using LC–MS/MS technology, a novel and unique 
method developed in close collaboration with the Depart-
ment of Clinical chemistry of Erasmus MC. Similarly, 
we have measured a full steroid profile using LC–MS/
MS technology, as well as thyroid autoantibodies.

• Kidney disease: Next to the available kidney function 
measurements, serum creatinine, serum cystatin C and 
albuminuria, within the Rotterdam Study, we now also 
have repeated creatinine measurements available of par-
ticipants through the STAR (laboratory and diagnostic 
center) which provides over 100,000 new measurements.

• Immunity: immunoglobulins were recently determined 
in ca 10,000 participants

• Infections: we are currently collecting nasal and pharyn-
geal swabs for microbiome studies

Main results in the last 3 years

We have shown that an optimal thyroid function is essen-
tial for healthy aging. We have demonstrated that even in 

people without thyroid disease, high normal concentra-
tions of thyroid hormones are related to an increased risk 
of sudden cardiac death [182], cardiovascular morbidity 
and mortality [183], dementia [184], frailty [185], type 2 
diabetes [186] cancer risk [45], and a pro-coagulant state 
[187]. As a consequence, a high-normal thyroid state is 
associated with a decrease in life expectancy of 3.5 years 
for people with a high-normal thyroid function compared 
to low-normal [188]. Finally, we have identified multiple 
important novel genetic loci contributing to this difference 
in thyroid function [189]. These data together have identified 
thyroid hormone as a potential modifiable risk factor in the 
aging-related diseases, and have contributed importantly to 
the current treatment of patients with thyroid disorders [190, 
191, 192].

In previous years we have focused on the relationship 
between low kidney function and brain health including 
cerebrovascular and degenerative disease. We have shown 
kidney function and kidney function decline to be associa-
tion with stroke, but not for dementia [193]). Furthermore, 
we have been able to show that estimated glomerular filtra-
tion rates are independently associated with cerebral blood 
flow [194] and worse white matter microstructural integrity 
[195], which could represent a possible mechanism explain-
ing the relation of low kidney function and brain diseases. 
On the other hand we have also sought possible new markers 
for kidney function decile and identified a von Willebrand 
factor: ADAMTS13 ratio (a marker for prothrombotic state) 
as possible risk factors for development of kidney disease 
[196].

Future perspectives

We are currently investigating if specific thyroid hormone 
metabolites determined by LC–MS/MS can better delineate 
the role of thyroid hormone in the aging process and help to 
define the optimal health range for this hormone.

We have acquired information on end-stage kidney dis-
ease (dialysis or kidney transplantation) through collabora-
tion with the Renine database, which will provide is with 
clinically relevant information on hard outcomes of kidney 
function. Furthermore, we are acquiring additional infor-
mation on urinalysis performed in participants of the Rot-
terdam Study through general practitioners and laboratory 
and diagnostic centers.

For additional EJE references please see [197–208].

Hepatogastrointestinal diseases

This research line is one of the youngest lines within the 
Rotterdam Study and focuses on major diseases of the liver, 
gut and stomach. Key focus areas include non-alcoholic fatty 
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liver disease, non-alcoholic steatohepatitis, viral hepatitis, 
cancers of these organsystems, and liver dysfunction and 
fibrosis. The last few years, this research line has consoli-
dated its efforts and focused primarily on continuity. The 
reader is therefore referred to the previous paper from the 
Rotterdam Study detailing the methods of this research line 
[209].

For additional EJE references please see [210, 211].

Neurological diseases

Overall aim and focus areas

Within the Rotterdam Study neuroepidemiologic research 
has primarily focused on the frequency, etiology and early 
detection of the following two major groups of age-related 
neurologic diseases: (1) neurovascular: stroke, including 
cerebral infarction, intracerebral hemorrhage, and transient 
ischemic and neurologic attacks and (2) neurodegenerative: 
dementia, including Alzheimer’s disease and Parkinson’s 
disease. As clinical symptoms in these diseases typically 
manifest themselves late in the disease course, our addi-
tional research focus is on pre-symptomatic brain pathology 
that can be assesses with non-invasive modalities, includ-
ing magnetic resonance imaging (MRI), cognitive testing 
and gait assessments and more recently electromyography 
(EMG) for peripheral nerve assessment.

Key methods and data collection

The most important source for incident cases of these neu-
rologic diseases is through linkage of our database with 
files from the general practitioners, the municipality, nurs-
ing home physicians’ files and additional information (such 
as brain imaging reports) collected from hospital records 
[209]. In addition, participants, that visit the research center, 
undergo a screen for dementia with the Mini Mental State 
Examination (MMSE) and the Geriatric Mental Schedule 
(GMS), followed by an examination and informant interview 
with the Cambridge Examination for Mental Disorders of 
the Elderly (CAMDEX) in screen-positives (MMSE < 26 or 
GMS > 0), and subsequent neurological, neuropsychological 
and neuroimaging examinations [212, 213]. Furthermore, 
participants are screened for cardinal signs of parkinsonism 
(resting tremor, rigidity, bradykinesia, or impaired postural 
reflexes). Persons with at least one sign present are examined 
with the Unified Parkinson’s Disease Rating Scale and a 
further neurologic exam [214]. After thorough assessment 
of these sources, case reports are compiled, which are subse-
quently discussed by a panel led by an experienced neurolo-
gist [209, 212–217].

From August 2005 onwards (RS-II-2 and further), a dedi-
cated 1.5 T scanner is operational in the research center of 
the Rotterdam Study, and brain imaging is performed in 
all study participants without contra-indications [218]. In 
addition to the MMSE, from the third examination round 
(RS-I-3) onwards, we added a 30 min test battery that was 
designed to assess executive function and memory function, 
and which includes a Stroop test, a Letter Digit Substitu-
tion Task, a Word Fluency Test, and a 15 words Word List 
Learning test [219]. This test battery was expanded from 
the fourth survey onwards (RS-I-4) to include motor func-
tion assessment using the Purdue Pegboard Test. Moreover, 
from 2009 onwards we expanded further by including the 
Design Orientation Test (DOT) and a modified version of 
the International Cooperative Ataxia Rating Scale (ICARS), 
which assess visuo-spatial orientation and ataxia respec-
tively [220, 221]. Halfway through RS-III-1, we success-
fully implemented the assessment of gait in all participants 
using the GAITRite walkway (https ://www.gaitr ite.com/). 
Gait is assessed using a 5.79 m long walkway (GAITRite 
Platinum) with pressure sensors [222]. Finally, starting in 
January 2013, we have successfully implemented electro-
myography to assess polyneuropathy [223].

Main findings in the last 3 years

In recent years, we have published data on the burden of 
common neurologic diseases in older adults in terms of 
life-time risks, including their co-occurrence and preven-
tive potential. We found that one in two women and one in 
three men were diagnosed with dementia, stroke or parkin-
sonism during their lifetime [224, 225]. We further showed 
that strategies that could delay disease onset of all three dis-
eases by 1–3 years, could potentially reduce these risks by 
20–50%. These findings further highlight the importance of 
preventive measures that could reduce the burden of these 
common neurologic diseases in the elderly. For dementia, 
prevention trials that aim to delay cognitive decline are 
increasingly recruiting older individuals who are geneti-
cally predisposed to develop dementia. However, it remains 
unclear whether targeted health and lifestyle interventions 
can attenuate or even offset an increased genetic risk. Using 
long-term data on genetic and modifiable risk factors [226], 
we demonstrated that in individuals at low and intermediate 
genetic risk, favourable modifiable-risk profiles, including 
no current smoking, absence of depression, absence of dia-
betes, regular physical activity, absence of social isolation 
and adherence to a healthy diet, were related to a lower risk 
of dementia compared to unfavourable profiles. In contrast, 
these protective associations were not found in those at high 
genetic risk. These findings may aid in the design of future 
prevention trials. This was one of the first and largest stud-
ies to examine simultaneously the interplay between genetic 

https://www.gaitrite.com/
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and multiple lifestyle factors. Furthermore, in terms of 
gene–gene interaction, we found in another study that com-
mon variants with small individual effects jointly modify the 
risk and age of onset of dementia and Alzheimer’s disease, 
particularly in APOEe4 carriers [227].

In order to implement potential preventive measures, 
identification of individuals at high risk is essential. For 
existing prediction models, we showed high variability in 
discriminative ability for predicting dementia in the elderly 
highlighting the need for updated new models [228]. In a 
follow-up study, we developed and validated a prediction 
model to calculate 10-year risk of developing dementia in 
an aging population [229]. The basic model, which can be 
used in primary care setting, included information readily 
available from the anamnesis on age, sex, education, current 
smoking, history of diabetes, history of symptomatic stroke, 
depressive symptoms, parental history of dementia, presence 
of subjective memory complaints, need for assistance with 
finances or medication and systolic blood pressure available 
from the physical exam. Furthermore, an extended model 
was developed that could be used in a specialized memory 
clinic and that incorporated additionally cognitive testing, 
brain MRI markers and genetic data.

Finally, besides dementia [230–235], we are actively 
investigating the risk factors, burden and long-term prog-
nosis of stroke [236–239], including transient ischemic and 
neurologic attacks, and parkinsonism (including Parkinson’s 
disease) [240–242], in the general elderly population. In 
recent years, we have also actively participated in several 
international genetic consortia to discover novel genetic loci 
for neurologic diseases and their preclinical endophenotypes 
[230, 243, 244, 245–247].

Future perspectives

Traditionally, the focus within the neuro-epidemiologic 
research line has strongly been on dementia and stroke. In 
the coming years, we aim both to strengthen our research in 
the field of Parkinson’s disease and migraine, and extend to 
other neurologic diseases, such as epilepsy.

For additional EJE references please see [228, 237, 
248–276].

Ophthalmic diseases

Overall aim and focus areas

Ophthalmic research in the Rotterdam Study focuses on 
occurrence, determinants, and predictors of common eye 
diseases which have a high risk of severe visual loss. Our 
main focus is on age-related macular degeneration (AMD), 
glaucoma, and myopia, and particularly in the last few years 

we investigated genetic risk variants and pathways. To this 
end, we connected with many other epidemiologic stud-
ies in all parts of the world and formed large international 
consortia.

Key methods and data collection

We have not changed methodology after the 2018 update. 
In short, we perform an extensive eye examination at each 
round at the research center including best-corrected vis-
ual acuity (ETDRS), refractive error, Goldmann applana-
tion tonometry, keratometry and ocular biometry (Lenstar, 
Haag-Streit), corneal topography (Pentacam; Oculus), and 
visual field testing (Frequency Doubling Technology C20-2, 
Zeiss Meditec). After pharmacological mydriasis, we make 
35° color photographs of the macular area, and 20° simul-
taneous stereoscopic imaging of the optic disc and macular 
area using stereoscopic digital imaging (Topcon camera). 
We image retinal layers at the macula and optic disc with 
Fourier 3D Spectral domain optical coherence tomography 
(Topcon), and perform fundus autofluorescence, near infra-
red, and red-free measurements (Heidelberg). The classifi-
cation of AMD, POAG, refractive error, and retinal vessel 
diameters remain unchanged.

Main findings in the last 3 years

A European project focusing on AMD (EYE-RISK) was 
launched in 2015 and ended in 2019. For this project, we 
obtained crude data on AMD and all its determinants from 
20 studies (E3 consortium), and established the largest AMD 
database in Europe consisting of 53.000 participants. The 
prevalence of late AMD stages in this database was 10% for 
persons 85 + years, and projections indicated that the number 
of patients with late AMD will almost double by 2040 [277]. 
High HDL cholesterol was significantly associated, which is 
surprising given its opposite relation to cardiovascular dis-
ease [278]. We identified an association with protein-altering 
variants in the COL8A1 gene with a whole exome platform 
[279]. A healthy diet was protective: persons following the 
so-called Mediterranean diet had a 41% reduction in risk of 
late AMD [280]. We also investigated determinants outside 
EYE-RISK. In the 3CC study, we found that the combina-
tion of genetic risk factors, early AMD phenotype, smok-
ing, low intake of fish and lutein-zeaxanthin best predicted 
progression over 10 years [281]. Using our own Rotterdam 
cohort, we showed that a diet 200 g per day of vegetables, 
fruit two times per day, and fish two times per week reduced 
the risk of late AMD by half [282].

We continued our search for genes within the CREAM 
and 23andMe consortium (161 K persons), and identified 
161 loci for refractive error. The genes suggest a light-
dependent retina to sclera pathway in which all retinal cell 
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types are involved [283]. We also found a close relation 
between refractive error, eye length, age, and visual loss: one 
in 3 persons with refractive error worse than -6 diopters (eye 
length 26 + mm) will become severely visually impaired, as 
will 95% of those with eye length 30 + mm (− 15D) [284].

For glaucoma, we also continued the genetic search in the 
IGGC consortium. We found additional genes for intraocular 
pressure (IOP), blood pressure traits, and POAG, and found 
a strong genetic relation between IOP and POAG [285]. 
We found no evidence for a common genetic background 
between POAG and myopia [286]. We did find an associa-
tion with microRNAs [287]. We also focused on imaging, 
and found associations between a thinner retinal nerve fiber 
layer thickness and age, IOP, visual impairment, and his-
tory of systemic hypertension and stroke. A thicker nerve 
fiber layer was associated with smoking [288]. We linked 
image parameters from the retina to brain MRI images. 
Thinner upper layers of the retina were associated with gray 
and white matter changes particularly in the visual pathway 
[289]. We found no relation with migraine [290].

Future perspectives

Our goal for the future is to link the genetic factors found 
for these important eye disorders to the presentation of the 
phenotype, and to the interaction with environmental fac-
tors. We particularly aim to assess how persons with a high 
genetic load can alter their lifestyle to diminish their lifetime 
risk. We will improve quantification of our disease outcomes 
with algorithms developed by artificial intelligence, which 
will help improve our predictions.

Otolaryngological diseases

Overall aim and focus areas

The otolaryngological research within the Rotterdam Study 
aims to gain insight in the etiology and impact of age-related 
hearing loss. Age-related hearing loss is a common disorder 
that deprives older people of key sensory input, with poten-
tially severe consequences for social well-being and mental 
health [291, 292]. Our main areas of research are prevalence 
of age-related hearing loss; identification of determinants 
and risk factors of age-related hearing loss; associations of 
hearing loss with brain morphology and cognitive decline.

Key methods and data collection

Hearing loss is assessed at both ears by performing pure-
tone audiometry in a sound proof room. Hearing thresh-
olds are determined with headphones at frequencies 0.25, 
0.5, 1, 2, 4 and 8 kHz. To distinguish between cochlear and 

middle-ear pathology, also bone-conduction thresholds 
are measured at frequencies 0.5 and 4 kHz. Additionally, 
speech perception in noise is tested at the better ear, using 
a validated triplet digit test [293] with speech-shaped noise 
at a fixed presentation level of 65 dB SPL. The ability to 
understand speech in noise is a functional measure that 
includes both sensory and central aspects of the auditory 
system.

The general interview contains several general ques-
tions related to hearing problems. In case of hearing-aid 
use, the participant has to answer five additional ques-
tions of the International Outcome Inventory of Hearing 
Aids (IOIHA) [294]. In case of frequent tinnitus, ten addi-
tional questions of the Short Tinnitus Handicap Inventory 
(THIS) [295] are added.

Main findings in the last 3 years

As expected, we found a high prevalence of hearing loss 
in our population [296]. About 30% of the population 
above 65 years were identified with a hearing loss greater 
than 35 dB HL at both ears, meeting the current Dutch 
indication criteria for hearing-aid use. A general associa-
tion analysis revealed that hearing loss was independently 
associated with age, education, systolic blood pressure, 
diabetes mellitus, BMI, smoking and alcohol consumption 
[297]. Further exploration of the association between hear-
ing and BMI showed a strong relationship for fat-related 
BMI, but no clear association with general diet quality 
[298]. Carotid atherosclerosis was identified as another 
potential risk factor for hearing loss [131], suggesting an 
important role of vascular mechanisms in the etiology of 
hearing loss.

Genetic susceptibility to age-related hearing loss has 
been investigated in a large meta-analysis within the 
international CHARGE consortium (accepted for pub-
lication in Scientific Reports). Associations were found 
with 5 novel variants. In addition, several genes previously 
associated with age-related hearing loss were confirmed. 
Interestingly, different associations were found for low- 
and high-frequency hearing loss, confirming that different 
cochlear structures are involved in the etiology of age-
related hearing loss.

As hearing loss may have a possible negative impact on 
cognitive function in an aging population, we studied the 
association between age-related hearing loss and brain mor-
phology. Hearing loss was independently associated with a 
smaller brain volume, mainly driven by associations with 
white matter volumes [299].Further analyzes revealed addi-
tional associations between hearing and the level of organi-
zation of the white-matter microstructure [300]. Poorer 
hearing was associated with a poorer white-matter integrity.
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Future perspectives

We will continue our research in the current areas of inter-
est. Additionally, future research will focus on longitudinal 
analyzes of hearing loss as these data have recently become 
available. Another new topic of research is tinnitus, which 
is closely related to hearing loss.

Psychiatric diseases

Overall aim and focus areas

The overall aim is increasing the understanding of etiology, 
course and effects of psychiatric symptoms and disorders 
in the general population across the life course, focusing on 
common psychiatric diseases and their symptoms, such as 
depression, anxiety, complicated grief and sleep disturbance. 
Over the last years our research particularly focused on (1) 
the etiology and interrelation between psychiatric disease 
symptoms across disorders and (2) the relation of psychiatric 
disease and its symptoms with physical and cognitive health.

Key methods and data collection

Data collection on psychiatric phenotypes in the Rotterdam 
Study has been ongoing since 1993. One of our main phe-
notypes of interest, depression, was first measured with the 
Hamilton Depression Anxiety Scale (HADS-Depression 
subscale) and since 1997 with the Center of Epidemiol-
ogy Scale-Depression (CES-D). Additionally, semi-struc-
tured clinical interviews have been used to obtain clinical 
diagnoses of depressive disorder (Schedules for Clinical 
Assessment in Neuropsychiatry, SCAN; since 2016 Life-
time Depression Assessment Self-report, LIDAS). Unique 
to the Rotterdam Study is the follow-up of medical records 
for depression diagnoses, currently being further expanded. 
Anxiety has been assessed with the Hamilton Depression 
Anxiety Scale (HADS-Anxiety subscale) and a slightly 
adapted Munich version of the Composite International 
Diagnostic Interview (CIDI). Follow up of medical records 
is also done for anxiety diagnoses. Sleep was measured sub-
jectively and objectively in the Rotterdam Study. It is meas-
ured subjectively with the Pittsburgh Sleep Quality Index 
(PSQI) in every participant and additionally in subsamples 
with the Berlin Questionnaire (BQ), an adapted version of 
the Munich Chronotype Questionnaire (MCTQ), and a 7-day 
sleep diary. Objectively estimated sleep is repeatedly avail-
able by means of actigraphy, for which participants wear 
an accelerometer for 7 days and nights around their wrist; 
this is now part of routine data collection. Lastly, in 929 
participants a 1-night polysomnography has been recorded. 
Additional current data collection focusses on complicated 

grief with (Inventory of Complicated Grief, ICG), aggres-
sion (Aggression Questionnaire, AQ), sexuality, social sup-
port, loneliness (UCLA Loneliness scale, 3-item version) 
and end of life decisions.

Main results in the last 3 years

To further increase our understanding of the etiology of 
depression, we employed genetic and epigenetic approaches. 
Genetic analyses suggested new genes that might play a role 
in depression, for example RCL1 was identified as a novel 
candidate gene for depression [301] and 44 new independent 
loci associated with depression were found in a large GWAS 
[302]. In addition, methylation of 3 CpG sites associated 
with incident depressive symptoms, suggesting axon guid-
ance may be a common disrupted pathway in depression 
[303]. Depressive symptoms have also been implicated on 
pathways to disease. High and increasing depressive symp-
tom trajectories were associated with a higher mortality risk 
than stable low trajectories, while remitting trajectories were 
not associated with a higher risk [304]. Depressive symp-
toms were also found to be a mediator in the association of 
cardiometabolic dysregulations with cognitive decline [305]. 
Over the last three years, we also emphasized studying the 
role of sleep in brain health. Evidence for an association of 
subjectively rated sleep with white matter integrity is limited 
[306], but disturbed sleep as estimated with actigraphy was 
related to white matter integrity over time [307]. We also 
showed that while subjective sleep quality was not associ-
ated with the risk of dementia over a mean follow-up of 
8.5 years [308], it was related to an increased risk of Parkin-
son’s Disease over a similar follow-up period [309]. To help 
disentangle mechanisms underlying subjectively and objec-
tively estimated sleep and 24-h rhythm characteristics mul-
tiple new loci have been identified using a GWAS approach 
[310, 311]. Genetic analyses did not detect significant SNP 
heritability for morning and diurnal cortisol [312]. Cortisol 
levels were lowered in those with complicated grief versus 
those with no grief of normal grief [313] and experiencing 
complicated grief was also associated with a poor sleep qual-
ity cross-sectionally, albeit not longitudinally [314]. In con-
trast, prolonged grief was associated with cognitive decline 
over 7 years of follow-up [315].

Future perspectives

Future work will remain its focus on common psychiatric 
disorders and symptoms, not only as separate disease enti-
ties but also taking a trans-diagnostic approach to assess 
interrelations and shared pathways. This approach will also 
be taken to assess the relation of psychiatric health with 
cognitive and physical health. Sleep will remain a focus 
point as pone potential pathway as it is associated with most 
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mental health disorders. Lastly, social health and stress will 
be increasingly studied as important components of health 
as well.

For additional EJE references please see [316–324].

Respiratory diseases

Overall aim and focus areas

The respiratory epidemiology research group of the Rot-
terdam Study (RS) aims to determine the prevalence and 
incidence of respiratory symptoms (e.g. chronic cough), 
lung function impairment and common respiratory diseases 
such as asthma and chronic obstructive pulmonary disease 
(COPD) in middle-aged and older adults. In addition, we 
investigate risk factors—encompassing genetic suscepti-
bility, environmental exposures and life style factors—for 
respiratory symptoms and diseases, calculate the lifetime 
risk and develop genetic risk scores. Lastly, we aim to elu-
cidate the heterogeneity and the pathogenesis of asthma and 
COPD as well as acute exacerbations of these chronic air-
way diseases in order to delineate novel therapeutic targets. 
The overarching objective is to improve patient outcomes by 
discovering biomarkers for early diagnosis and identifying 
novel therapeutic targets.

Key methods and data collection

In the Rotterdam study, we perform repetitive measurements 
of spirometry, offering the opportunity to investigate longi-
tudinal trajectories of lung function over time. Additionally, 
we have information on respiratory diseases from medical 
records of all participants. A major asset of the Rotterdam 
Study is the multidisciplinary extensive characterization of 
the participants, the long-term longitudinal follow-up and 
the interdisciplinary collaboration to study multi-morbidity 
in older subjects.

The RS is a founding partner of the CADSET (Chronic 
Airway Diseases Early stratification) consortium, an Euro-
pean Respiratory Society (ERS) Clinical Research Collabo-
ration studying the determinants and implications of differ-
ent lung trajectories through life [325]. In collaboration with 
the CHARGE consortium, we have elucidated the genetic 
determinants of spirometric impairment, defined as either 
low lung volumes (Forced Vital Capacity [FVC]) or airflow 
limitation (decreased ratio of Forced Expiratory Volume in 
One second  [FEV1] to FVC) [326–328].

Main results in the last 3 years

We have determined the diffusing capacity of the lung meas-
ured by uptake of carbon monoxide (DLCO) in participants 

of the RS, determined its heritability and investigated the 
genetic determinants of lung diffusing capacity [329]. In a 
genome-wide association (GWA) study in collaboration with 
the Framingham Heart Study, we identified a genetic variant 
in ADGRG6 which was significantly associated with DLCO 
per alveolar volume (DLCO/AV), an important measure of 
pulmonary gas exchange. Moreover, expression of ADGRG6 
was decreased in the lungs of subjects with decreased 
DLCO/AV and patients with COPD. Since ADGRG6 is a G 
protein coupled receptor (a drugable target), it might be an 
interesting therapeutic target for emphysema-predominant 
COPD patients.

Asthma is a heterogeneous disease affecting subjects at 
all ages. In the RS we have determined the prevalence of 
asthma in middle-aged and older subjects [330]; 3.6% of 
the approximately 15.000 participants (59% women, mean 
age 65 years) had physician-diagnosed asthma, with a higher 
prevalence in females (4.2%) than in males (2.8%). Sub-
jects with asthma had a significantly higher prevalence of 
depression and obesity [330]. The RS has contributed to a 
large multi-ancestry GWA study of asthma, performed by 
the Transatlantic Asthma Genetics Consortium (TAGC), 
identifying five novel asthma risk loci [331].

We have shown that COPD is associated with an 
increased risk of peripheral artery disease [332], sudden 
cardiac death [333] and the development of atrial fibrilla-
tion [334]. COPD subjects with frequent exacerbations, with 
an enlarged left atrium on echocardiography or increased 
systemic inflammation had a significantly increased risk to 
develop atrial fibrillation [334]. Since atrial fibrillation is 
often asymptomatic and is an important cause of (embolic) 
stroke, this association between COPD—especially during 
or following acute exacerbations—and atrial fibrillation has 
implications for clinical practice. In a collaborative GWAS 
we identified 82 genetic loci significantly associated with 
COPD, of which 14 were shared with asthma or pulmonary 
fibrosis, confirming our previous observations of overlap 
between COPD loci and loci for lung function and pulmo-
nary fibrosis [335]. Through epigenetic and transcriptomic 
studies, we demonstrated that genetic variants at chromo-
some 15q25.1 (encompassing the nicotinic acetylcholine 
receptor 3 [CHRNA3] gene and the iron-responsive element 
binding protein 2 [IREB2] gene) are differentially methyl-
ated in blood and differentially expressed in lung tissue of 
COPD cases and controls [336]. Similarly, we have eluci-
dated the relation of the top COPD GWAS variant at chro-
mosome 19q13.2 with DNA methylation and gene expres-
sion in blood and lung tissue [337].

Future perspectives

The respiratory epidemiology research group aims to 
strengthen the epidemiologic and translational research 
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within asthma and COPD, and to expand the spectrum of 
diseases investigated within the RS. First, asthma and COPD 
are heterogeneous diseases encompassing multiple clinical 
phenotypes and molecular endotypes with major differences 
in clinical presentation, etiology, natural history, prognosis 
and response to treatment. In the coming years we want to 
unravel further the pathogenesis, causes and mechanisms 
of asthma and COPD, both during stable disease and at 
acute exacerbations. Second, within the RS there are unique 
opportunities to investigate other respiratory diseases includ-
ing interstitial lung diseases, sleep disordered breathing 
(obstructive sleep apnea syndrome), pulmonary hyperten-
sion [338], respiratory infections, chronic cough and lung 
cancer [36]. Indeed, chest CT scans have been performed 
in 2.500 participants; in 1.000 of these subjects chest CT 
imaging has been repeated after an interval of 10–12 years. 
Third, through linkage with pharmacy data, electronic medi-
cal records as well as cancer and mortality registries, the RS 
is ideally suited for pharmaco-epidemiologic studies. Lastly, 
using a systems biology approach, we aim to elucidate the 
pathogenic pathways of respiratory diseases by integrat-
ing multiple omics platforms (e.g. genomics, epigenomics, 
transcriptomics, proteomics and metabolomics) in clinically 
well phenotyped participants with long-term longitudinal 
follow-up.

For additional EJE references please see [339–345].

Genetic and molecular epidemiology

Overall aim and focus areas

Genetic epidemiology and molecular epidemiology are 
emerging innovative fields of research in which molecu-
lar, cellular and biochemical concepts and techniques are 
incorporated into computational models and epidemiologi-
cal studies to identify determinants of human diseases. The 
team in these research lines focusses on bio-banking of the 
biological samples of participants of the Rotterdam Study, 
and investigation of molecular biological determinants of 
complex diseases. Bio-banking involves collecting, storing 
and managing the biological tissues of the Rotterdam Study 
participants at all follow-up measurements. This concerns 
mainly blood, urine, saliva, hair and faeces but with micro-
biome studies several other specimens are being collected 
(such as skin swaps, nose swaps, eye swaps, etc.). We have 
further stored peripheral blood mononuclear cells (PBMCs) 
for the isolation of induced pluripotent stem (iPS) cells. The 
main research focuses include identification of genetic pre-
dictors for disease and treatment response, and assessment of 
biological mechanisms underlying complex diseases using 
various biomaterials (e.g., DNA, RNA, proteins, metabo-
lites, microbes) measured with novel high-throughput 

–omics technologies. The materials and data generated by 
this research line now sum up to ~ 3 × 1012 data-points, and 
are actively used by all research groups of the Rotterdam 
Study. An overview of all the “omics” datasets in the Rot-
terdam Study cohorts is given in Table 1.

Key methods and data collection

At each examination at the research center, blood, serum, 
plasma (citrate, heparine), urine and saliva is collected, as 
well as EDTA tubes for DNA and PAXgene tubes for RNA 
isolation. Fasting blood samples are collected along with 
challenged samples as part of a glucose tolerance test. Saliva 
is collected before and after a dexamethasone-suppression 
test. Saliva is frozen at − 196 °C before and after the chal-
lenge, and stored at − 80 °C. To obtain serum and plasma, 
tubes are centrifuged according to a protocol standardising 
time and conditions from the drawing of blood to centrifu-
gation. All samples including the full blood are snap-frozen 
at − 196 °C using liquid nitrogen and stored at − 80 °C. Over-
night urine samples are collected at home, frozen at − 196 °C 
at the research centre and stored at − 80 °C.

DNA is isolated from whole blood at one laboratory at 
Erasmus MC by a manual salting-out protocol and is sub-
sequently stored in Eppendorf tubes at -20 °C, and in later 
rounds in Matrix 2D-barcode tubes. A copy of the complete 
DNA collection of ~ 13,000 samples has been transferred 
to Matrix 2D-barcode tubes in 96-well format at another 
location. This copy has been subjected to normalization of 
DNA concentrations and made suitable for handling in 96- 
and 384-well micro-titer plates for subsequent downstream 
genomic analysis.

Starting with the RS-III round of data collection, blood 
drawing has also been taken place with PAXgene tubes, 
from which whole RNA is isolated and stored at − 80 °C. 
This is now ongoing for the whole study population follow-
ing the cycles of visits to the research centre.

Similarly, with the RS-III round, collection of faeces 
material has been initiated for the intestinal microbiome 
analysis. A collection pot is distributed at the research centre 
visit which is to be used at home and then by postal mailed 
returned to Erasmus MC where DNA is isolated and stored 
at − 80 °C. This is now ongoing for the whole study popu-
lation following the cycles of visits to the research centre.

For data management, an in-house customized sample-
management system has been developed. The Rotterdam 
Study “omics” data (incl. GWAS data, RNA expression 
profiles, DNA methylation profiles, and Next-Generation 
Sequencing (NGS) data including whole-exome sequences, 
RNA-sequencing, and the microbiome 16S ribosomal RNA) 
are generated in the Human Genotyping Facility (HuGe-
F) (www.glimd na.nl), while QC-ed and extracted data are 

http://www.glimdna.nl
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stored and managed in the central data repository of the Rot-
terdam Study.

Genotyping data

(A) The genome-wide association studies (GWAS) data-
set of more than 12,000 DNA samples from the three 
Rotterdam Study cohorts consists of a) a small data-
set of ~ 400 women with 500  K Affymetrix arrays 
(Nsp250 + Sty250; the so-called “pilot” dataset), and b) 
a large dataset of ~ 12,000 samples consisting of 550 K 
(RS-I, II; single + duo array format) and 610 K (RS-III; 
Quattro array format) Illumina array genotypes. In the 
pilot dataset also other array types have been run such 
as the Illumina Omniexpress 2.5 array, and the new 
Illumina GSA array and the Affymetrix PMRA array 
allowing for comparisons.

  The Illumina GWAS genotype datasets of the Rot-
terdam Study (RS) also form the basis to generate 
so-called “imputed” datasets derived thereof. In this 
process the genotypes of SNPs which have been geno-
typed in reference datasets (such as HapMap and 1000 
Genomes), are being estimated for all Rotterdam Study 
samples using the basis Illumina 500 K SNP dataset 

configurations in each subject. With the advent of 
large reference datasets becoming available based on 
whole genome/exome NGS, imputation activities using 
the RS GWAS dataset will remain an active area of 
development. So far, the RS GWAS datasets have been 
imputed to HapMap version 2 and 3 (with ~ 2.5 mil-
lion resulting imputed SNP genotypes obtained for the 
RS dataset), the 1000 Genomes (1 kg) dataset version 
Iv3 and IIIv5 (with ~ 30 and 50 million resulting SNP 
genotypes, respectively), the Genome of the Nether-
lands (GoNL), the UK10K whole genome sequencing 
dataset, and, more recently, the haplotype reference 
consortium (HRC) r1.1 dataset (~ 40 million SNPs). 
Especially the latter imputation uses as a reference up 
to 64,976 haplotypes allowing also the study of less 
frequent to rare variants and comprising 40 million 
SNPs, all with an estimated allele count greater than 5. 
Imputation of the RS GWAS datasets to the TOPMed 
reference panel is now ongoing with an expected num-
ber of 130 million variants.

(B) Whole-exome sequencing (WES) dataset in the RS 
is available for 2628 samples from RS-I as part of 
the NCHA sponsored project and were generated by 
the HuGe-F on the Illumina HiSeq2000 sequencing 

Table 1  Overview of sample numbers with “omics” datasets across the three Rotterdam Study cohorts with the number and type of measure-
ment for each omic method

SNP, single-nucleotide polymorphism; CpG, a two-nucleotide position (C next to G on the same strand) of which the C can be methylated; OUT, 
operational taxonomic unit; RS-I, first cohort of the Rotterdam Study; RS-II, second cohort of the Rotterdam Study; RS-III; third cohort of the 
Rotterdam Study; RS-IV, fourth cohort of the Rotterdam Study
a Serum proteins profile include total estradiol, total testosterone, sex hormone-binding globulin, dehydroepiandrosterone, dehydroepiandroster-
one sulfate, androstenedione, 17-hydroxyprogesterone, cortisol, corticosterone, 11-desoxycortisol, vitamin D, thyroid stimulating hormone, free 
T4, interleukins, C-reactive protein, Insulin-like growth factor 1, insulin, iron, ferritin, transferrin, fibrinogen, homocysteine, folic acid, ribofla-
vine, pyridoxine, SAM/SAH ratio, cobalamine, Lp-PLA2, Fas/Fas-L, abeta42/40

Omics data type Total Data point Number RS-I RS-II RS-III RS-IV

GWAS SNP data 11,502 SNPs 40,000,000 6291 2157 3054 Ongoing
Exome array 3183 SNPs 250,000 3183 – – –
Whole-exome Seq 3778 Variants 693,000 3778 – – –
Whole-genome Seq (WGS) 96 Variants 3,000,000 96 – – –
Genome-wide expression (array) 881 Genes 25,000 – – 881 –
Genome-wide expression (RNA-Seq) 829 Read 18,000,000 27 504 276 –
Genome-wide DNA methylation 1600 CpGs 450,000 69 468 1003 –
Gone-wide microRNA profiling 2750 miRNAs 2083 1000 1000 – 750
Serum protein  profilea 9820 Proteins 35 3812 2542 3466 -
Proteomics 3596 Proteins 92 + 92 – – 3596 –
Metabolomics untargeted (NMR/UPLC/MS) 1826 Metabolites 4000 1826 – – –
Metabolomics targeted (Nightingale platform) 5381 Metabolites 228 2880 593 1788 –
Metabolomics targeted (Metabolon platform) 488 Metabolites 855 488 – Ongoing –
Gut Microbiome (16S rRNA) 2000 OTUs 500 – – 2000 –
Mitochondrial DNA (PCR) 500 1 – 500 – – –
Telomer length (PCR) 1800 1 – 1800 – – –
Total ‘omic’ datapoints in RS: 46,434 × 62,425,546 = 2,898,667,802,964
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machines [346]. The samples for this experiment were 
selected to constitute a random sample from the RS-I 
dataset. Through a collaborative grant from the NIH 
Alzheimer initiative (ADSP), we have obtained an 
additional ~ 1200 samples with WES NGS data from 
RS-I generated at the Broad Institute, Boston, USA (of 
which 50 overlap with the NCHA WES dataset), so the 
net total number of samples with WES data is 3778. 
The RS WES dataset is now also part of the so-called 
commons dataset of the CHARGE consortium which 
has ~ 16,000 WES samples and 5000 WGS samples.

(C) Whole-genome sequencing (WGS) dataset consists of 
100 samples also from the RS-I which were sequenced 
as part of the Genome of the Netherlands (GoNL) 
[347], with an average sequencing depth of 6 × and with 
improved phasing because of the trio-design.

(D) About 300 SNPs in several candidate genes have been 
individually measured over the past 15 years, (includ-
ing genes such as ApoE, VDR, ESR1, fibrinogen, etc.). 
Additionally, for a subset of RS-I samples telomere 
length (~ 1800) and mitochondrial DNA content (~ 500) 
was measured. Also, the telomere and mitochondrial 
DNA will be measured (by RT-PCR) in the total DNA 
set of the Rotterdam Study, including DNA samples 
collected at follow-up visits. In addition, we will assess 
heteroplasmy of mitochondrial DNA in blood by NGS 
in a large subset of RS-I.

Transcriptome data

With the availability of good RNA from Rotterdam Study 
participants, starting with the RS-III subjects, studies have 
been initiated analysing the expression pattern of a single 
gene across samples or of the complete RNA collection in a 
sample (expression profiling). An expression profiling data-
set has now been generated for ± 900 samples of the RS-III 
dataset, using the Illumina Human HT-12 v4 array contain-
ing ~ 48,000 probes. Moreover, in a BBMRI-sponsored col-
laborative effort to create a large-scale data infrastructure 
to work on integrative omics studies in Dutch Biobanks, 
the HuGe-F has generated RNA sequencing profiles of 
in total ± 4000 individuals of six Dutch biobanks, includ-
ing ± 900 samples from the RS-III-1, at a depth of 30 mil-
lion paired end reads. Together there are a very rich RNA 
expression dataset of in total ± 1800 sample is now available 
in the RS-III-1. Yet while RNA expression is known to dif-
fer between tissues, so far we only have RNA isolated from 
whole blood as a tissue.

Epigenome data

A. DNA methylation can regulate gene expression without 
altering the underlying DNA sequence and is now emerging 

as a promising molecular strategy for risk stratification 
for complex disease. In the same samples that have RNA 
expression profiles, see above, we have generated DNA 
methylation profiles of ~ 480,000 CpG sites across the 
human genome using the Illumina Infinium HumanMeth-
ylation450 array. As this same set of RS-III-1 subjects was 
also used for the RNA expression profiling, deep genomic 
studies can now take place in combination with the GWAS 
data and NGS data in these ~ 1600 subjects.

B. MicroRNAs (miRNAs) represent a class of small non-
coding RNAs, which function as post-transcriptional regu-
lators of gene expression via targeting the 3′-untranslated 
region of target transcripts. In a total number of 2750 RS 
participants plasma miRNA levels were determined. These 
include a random selection of 1000 participants from the 
fourth visit of RS-I (RS-I-4) and 1000 participants from 
the second visit of RS-II (RS-II-2), these visits were per-
formed between 2002 and 2005 with follow-up visits every 
4–5 years. In addition, 750 participants from the new visit of 
RS cohort (RS-IV-1) were selected. The miRNA levels was 
measured by the HTG EdgeSeq miRNA Whole Transcrip-
tome Assay (WTA) (HTG Molecular Diagnostics, Tuscon, 
AZ, USA) and using the Illumina NextSeq 500 sequencer 
(Illumina, San Diego, CA, USA). The WTA measures the 
expression of 2083 human miRNAs, and the expression of 
13 housekeeping genes. In this setting, quantification of 
miRNA expression was based on counts per million (CPM) 
and log2 transformation of CPM was used as standardization 
and adjustment for total reads within each sample.

Metabolome data

Metabolomics is a rapidly growing field of study that 
endeavors to measure metabolites within a biological sam-
ple. New technologies in high-throughput metabolomics by 
mass spectrometry allow for an efficient profiling of metabo-
lites in body fluids of numerous participants in large cohort 
studies. The metabolomic profiles can represent a momen-
taneous functional readout of the physiological state of the 
human body and may provide novel biomarkers for diseases. 
Multiple datasets have been created in the Rotterdam Study 
sub-cohorts that contain information on metabolomics.

(A) As part of the COMBI-BIO consortium, we used large-
scale untargeted serum metabolic profiling by proton 
(1H) nuclear magnetic resonance (NMR) spectroscopy 
and UPLC Mass Spectrometry to characterize the meta-
bolic signature of 1826 individuals from the third visit 
of RS-I (RS-I-3) in relation with vascular health and 
cardiovascular disease.

(B) High-throughput metabolomics measurements as a 
part of the Biobanking and BioMolecular resources 
Research Infrastructure the Netherlands (BBMRI-NL) 
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initiative have been performed using plasma samples 
which were collected in EDTA coated tubes. Fasting 
samples from RS-I (n = 2880), RS-II (n = 663), and RS-
III (n = 1838) cohorts have been specifically selected in 
order to maximize the analytical number of prospective 
gene expression and gut microbiome research in rela-
tion to metabolomics. The plasma samples analyzed by 
the biomarker platform of Nightingale Health (formerly 
known as Brainshake) using NMR technique. Spectra 
have been obtained from 600 to 500 MHz instruments, 
using three molecular windows, namely lipoproteins, 
lipids and low molecular weight compounds. The spec-
tra were then de-convoluted by Nightingale’s propri-
etary bioinformatics software leading to quantification 
of absolute concentrations. The yielding biomarker 
data contains 228 measurements on apolipoproteins, 
lipoproteins sub-classes, amino acids, albumin, glu-
cose, glycolysis metabolites, ketone bodies, glycopro-
tein, sphingolipid, phosphoglyceride, polyunsaturated 
fatty acids and cholesterols.

(C) Plasma metabolites of 488 participants of the RS-I-3 
were measured by Metabolon Inc, in which ultra-high-
performance liquid chromatography and gas chroma-
tography coupled with tandem mass spectrometry were 
used to measure a large number and broad spectrum 
of molecules with a high degree of confidence [348]. 
Measuring plasma metabolites with this platform is 
now ongoing in ~ 1400 samples of RS-III-2.

(D) Urine metabolomics employing mass spectrometry, to 
perform both non-targeted urinary metabolomics as 
well as targeted quantification of eicosanoid metabo-
lites in urine, is now ongoing in ~ 1500 samples of 
RS-II-3 and RS-II-2.

Proteome data

Plasma levels of 92 inflammation-related proteins and 92 
cardiometabolic-related proteions were measured recently 
in > 3000 participants from the RS-III-1 using two Olink’s 
high-throughput assays (INFLAMMATION and Cardiomet-
abolic) and are now ready to be used in the future studies 
together with other omics data in the Rotterdam Study.

Microbiome data

The HuGe-F has optimized and applied stool/faeces collec-
tion protocols in a cohort setting, and used 16S sequencing 
protocols (NGS of the 16S rRNA v3/v4 area) to character-
ize the gut/intestinal microbiome. We have collected ~ 2000 
stool samples in the RS-III-1 sub-cohort from which DNA 
has been isolated and which have been sequenced on 16S v3/
v4 by NGS on Illumina MiSeq sequencing machines (Rad-
jabzadeh, et al., https ://doi.org/10.1038/s4159 8-020-57734 

-z). For other sources of microbiomes (eye, urine, mouth, 
skin, etc.) several pilot projects have shown their feasibility 
while sampling and sequencing protocols were optimized 
(e.g., for some microbiome body niches other 16S areas 
need to be sequenced). For all these other body niches larger 
sampling efforts are now ongoing in the ongoing collection 
rounds of the Rotterdam Study. These can be found under 
the description of the respective research lines.

Main findings in the last 3 years

Rotterdam Study investigators are playing leading roles in 
several of the large international consortia focused on assess-
ing the genetic determinants of complex diseases by pro-
spective meta-analysis across many epidemiological cohorts, 
such as in CHARGE and ENGAGE, and in many disease/
phenotype focused efforts such as ADSP, IGAP, PERADES, 
GIANT, GEFOS, REPROGEN, TREATOA, DIAGRAM. 
Since 2005 the genome-wide association study (GWAS) 
has changed the field of complex genetics, and identified a 
still growing list of thousands of common genetic variants 
contributing to disease risk. While this large scale global 
collaboration has originated from the GWAS era, similar 
consortia have been built around the genomics datasets with 
RNA expression profiles, DNA methylation profiles, and the 
NGS datasets on DNA, RNA and microbiomes, including 
the BBMRI-NL sponsored BIOS consortium and several 
CHARGE working groups. Especially, from the CHARGE 
consortium many important publications have emerged on 
a wide variety of phenotypes and diseases from all major 
research lines in the Rotterdam Study. They are discussed 
under the subheadings of each individual research line.

Future perspectives

Incidental findings in whole‑exome sequencing (WES) data

Based on the WES dataset and the exome chip dataset of the 
RS we have initiated a working group to look for so-called 
incidental findings which might be clinically relevant. This 
is done by determining presence of variants in particular 
sets of genes such as the list of 57 “actionable” genes as 
established by the American College of Medical Geneti-
cists (AMCG). A first result showed that carriers of suppos-
edly pathogenic mutations in the prion gene did not display 
an evident disease phenotype [349]. This phenomenon of 
reduced penetrance of supposedly pathogenic mutations is 
now under further investigation using the WES data of RS.

WES data was also used to investigate the association 
between all-cause mortality and carrier-status of somatic 
mutations in genes linked to clonal expansion of hematopoi-
etic stem cells. We found that, unlike previous reports in 
predominantly middle-aged individuals, somatic mutations 

https://doi.org/10.1038/s41598-020-57734-z
https://doi.org/10.1038/s41598-020-57734-z
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in genes linked to clonal expansion of hematopoietic stem 
cells do not compromise the 8- to 10-year survival in the 
oldest old [350].

Genetic risk assessment

Due to rapid progress in the outcomes of the many GWAS 
studies more and more, so-called polygenic risk scores 
(PRS) can now be calculated for numerous diseases as well 
as risk factors of diseases involving hundreds of SNPs per 
disease-specific PRS. In addition, the newer SNP arrays 
(such as GSA from Illumina, and PMRA from Affymetrix) 
also include many clinically relevant genetic markers in their 
content, such as pharmaco-genetic markers, and HLA. These 
developments have led to the formation of a new working 
group in CHARGE (genetic risk assessment) to further 
investigate the opportunities and limitations of such PRS and 
clinical variants in the setting of cohort studies, where return 
of results to participants is one aspect of consideration. It has 
also led to pilot studies to investigate the opportunities and 
limitations of applying such arrays in the clinical setting of 
(academic) hospitals.

Integrative omics and systems epidemiology

Within the Rotterdam Study sub-cohorts, various omics 
datasets (incl. genomics, epi-genomics, transcriptomics, pro-
teomics, metabolomics, and microbiome) have been gener-
ated. Integration of these population-based omics data with 
the state-of-the-art molecular and cellular model systems 
would help true biological insight into mechanisms behind 
complex diseases.

The epigenetic and transcriptomic data have increasingly 
been explored for associations with disease and traits, and 
especially environmental factors. Unlike previous efforts in 
using transcriptomic datasets, this is now also done in large 
collaborative efforts, increasing robustness and value of the 
results. Methylation signatures were identified for smoking 
[351], alcohol consumption [352], low grade inflammation 
[353], lipids [354], body mass and the adverse outcomes of 
adiposity [355].

Epigenome-wide studies have identified methylation sites 
associated with liver enzymes and hepatic steatosis and also 
a peripheral blood DNA methylation signature of hepatic fat 
with a potential causal pathway for non-alcoholic fatty liver 
disease [356, 357]. Furthermore, a finite set of DNA methyl-
ation markers (13 CpGs) were identified that allow accurate 
inference of smoking habit, with comparable accuracy as 
plasma cotinine use, and smoking history from blood, which 
is useful in epidemiology and public health research as well 
as in medical and forensic applications [351].

A number of studies have focused on the relationship 
between diverse molecular layers and (biological) aging. An 

integrative cross-omics analysis of DNA methylation sites 
have identified multiple CpGs for T2D, glucose and insulin 
homeostasis, and further showed the differential methylation 
explains at least 16.9% of the association between obesity 
and insulin [96]. Multi-omics analysis using the Rotterdam 
Study epigenetics and transcriptomics data also showed that 
regulatory mechanisms affecting the expression of IREB2 
gene, such as DNA methylation, may explain the associa-
tion between genetic variants in chromosome 15q25.1 and 
COPD, largely independent of smoking [336]. Likewise, a 
systematic analysis integrating GWAS, gene expression and 
DNA methylation data indicated multiple long non-coding 
RNAs associated with cardiometabolic disorders [358]. 
Besides, functional genomics by integrating GWAS data 
and various experimental studies using human iPS-derived 
neuronal progenitor cells and miR-142 knockout mice dem-
onstrated the role of miR-142 in the pathogenesis of Alzhei-
mer’s disease [359]. An independent study further identi-
fied that the clinical spectrum of early Alzheimer’s disease 
pathology is explained by different biological pathways, in 
particular, the endocytosis, clathrin/AP2 adaptor complex, 
and immune response pathways, that are independent of 
apolipoprotein E (APOE) [360].

For additional EJE references please see [361–373].

Nutrition and lifestyle epidemiology

Overall aim and focus areas

The main aim of the Nutrition & Lifestyle research line is to 
evaluate how nutritional factors and lifestyle behaviors, such 
as diet, physical activity, smoking, alcohol consumption and 
obesity, are associated with population health across the life-
course. In our group we study determinants of lifestyle fac-
tors and its trajectories, associations of lifestyle with health 
and disease, underlying mechanisms of these associations 
(e.g., epigenetics, microbiome composition, inflammatory 
markers), and how these may differ for different groups of 
people (e.g., by other environmental factors, age, or genetic 
make-up).

Key methods and data collection

Within the Rotterdam Study, data on several nutritional and 
lifestyle factors have been collected. Various behaviors, such 
as alcohol consumption, coffee intake, and smoking are 
measured with questionnaires. In older participants, appetite 
is assessed using the Council on Nutrition appetite question-
naire (CNAQ) [374]. For overall dietary intake, we use very 
comprehensive food-frequency questionnaires (FFQ) [44], 
from which data is available on food intake, nutrient intake, 
and various dietary patterns and scores.
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In addition to self-reported dietary data, several nutri-
tional biomarkers have been assessed, such as serum vitamin 
D, fatty acids, and vitamin B12. Nutritional status and adi-
posity are also determined by anthropometric measurements, 
but also with Dual-energy X-ray absorptiometry (DXA), to 
distinguish total-body and area-specific body fat, lean and 
bone mass.

Objective measurements of activity are performed with 
triaxial accelerometers (GeneActiv). Rotterdam Study par-
ticipants are asked to wear these for 7 consecutive days and 
nights, from which we extracted information on for example 
time spent in light to vigorous activity, sitting, or sleeping 
[375]. Additionally, we use questionnaires, currently the 
International Physical Activity Questionnaire (IPAQ) [376], 
to measure various domains of activity, sedentary behavior 
and specific sports.

Finally, in addition to these lifestyle factors, we are also 
estimating exposure of Rotterdam Study participants to air 
pollution; to ambient particulate matter (PM2.5, PM2.5 
absorbance and PM10) and nitrogen oxides (NO2 and 
NOx). In this ongoing effort we use the Land Use Regres-
sion (LUR) models developed within the European Study of 
Cohorts for Air Pollution Effects (ESCAPE) project [377].

Main findings in the last 3 years

Overall, lifestyle of the Rotterdam Study participants is sub-
optimal. Although physical activity levels are generally high, 
approximately two-thirds of participants were overweight or 
obese at baseline, about a quarter of the population smoked, 
and adherence to dietary guidelines was low [44, 378, 379].

These lifestyle factors are major risk factors for premature 
mortality [44, 380, 381] and several diseases. In the Rot-
terdam Study, we observed for example that more physi-
cal activity is associated with lower mortality [380], lower 
cardiovascular disease risk [382], and with better quality 
of life [383]. Independent of physical activity, is better diet 
quality associated with a lower risk several diseases, such as 
age-related macular degeneration [282], non-alcoholic fatty 
liver disease [384], colorectal cancer, chronic obstructive 
pulmonary disease, and stroke [44]; with better bone health 
[385], brain health [386]; and with better overall health, as 
assessed with a frailty index [387, 388].

More specifically, in several studies we focused on the 
role of nutrition in the development of developing type 2 
diabetes. We observed that a more plant-based diet and a 
lower intake of animal protein are associated with lower 
insulin resistance over time and lower risk of diabetes, inde-
pendent of other lifestyle and dietary factors [205, 389]. In 
other analyses we studied several pathways that may link 
nutrition or physical activity to diabetes risk and metabolic 
health, such as adiposity [390], inflammatory pathways [391, 
199] or DNA methylation [392–395].

We also identified several determinants of lifestyle. In 
the Rotterdam Study, diet, physical activity and insulin 
resistance differ by sociodemographic factors such as edu-
cation status [378, 396], and interestingly, also by season 
[397–399]. In international consortia projects, we identified 
several genetic determinants of dietary intake [400]. We also 
studied interactions of diet or other lifestyle factors with 
genetic predisposition to disease in influencing disease risk 
[226, 395, 400–402]. Although evidence remains inconsist-
ent, overall we found no evidence to tailor dietary recom-
mendations to genetic risk profiles for prevention of diabetes 
[400] or other diseases.

Finally, as lifestyle behaviors are often highly correlated 
[44, 403], we also study these factors in combination. We 
constructed a lifestyle score, including smoking, alcohol, 
diet quality, weight status, and physical activity [379] and 
observed that a better overall lifestyle was associated with 
better overall health, not driven by any specific lifestyle fac-
tor, confirming that a healthy lifestyle, i.e., a healthy diet, not 
smoking, no or low alcohol consumption, sufficient physical 
activity and a healthy weight, are all important in maintain-
ing or improving health.

Future perspectives

As lifestyle and its related health conditions change over 
time, we aim to collect more repeated and detailed meas-
urements, for example for objective measures activity, diet, 
and detailed body composition. These data will allow us to 
study trajectories of lifestyle factors in time, determinants of 
these changes, and how these relate to changes in subclini-
cal markers of health of disease. This will also allow us to 
better study the role of lifestyle among those with lifestyle-
dependent conditions such as obesity and diabetes, identify-
ing patterns and markers in lifestyle that could help not only 
in primary prevention but also in management and reversal 
of these diseases. Overall, this will help us to better under-
stand how lifestyle and environmental factors relate to health 
and disease over time and for different groups of people.

For additional EJE references please see [404–433].

Pharmacoepidemiology

Overall aim and focus areas

Pharmacoepidemiology is a branch of clinical epidemiol-
ogy in which the drug is the determinant of interest, either 
as a cure [efficacy and effectiveness] or as a cause of dis-
ease [drug safety].The focus in this research line is on drug 
effects, irrespective of the question whether these are benefi-
cial or adverse. Consequently, environmental and biological 
determinants for drug effects are studied, notably genetic 
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and epigenetic ones, as well as other biomarkers if avail-
able. Hereto, we focus on a large variety of biological and 
disease endpoints which are gathered in the Rotterdam Study 
to make use of the wealth of detailed information from these 
databases.

Key methods and data collection

The main data source consists of the complete medication 
records of almost all participants in the Rotterdam Study 
as of January 1st 1991 from all pharmacies serving the 
Ommoord region with details on the product and interna-
tional non-proprietary name, number of filled tablets/cap-
sules, strength, prescribed daily dose and duration of use. As 
the pharmacy data do not include over-the-counter (OTC) 
drugs, all participants receive a complete medication review 
on each of the regular interview rounds. In this way, it is 
also possible to study adherence [compliance] to pharmaco-
therapy. This combination of pharmacy and interview data is 
quite unique in pharmacoepidemiology as the large majority 
of healthcare databases, as well as population studies miss 
either medication filling data or interview data. For a random 
sample of 2000 participants of the Rotterdam Study, blood 
samples are available to assess drug levels in users. This 
can be employed for pharmacokinetic/pharmacodynamic 
modeling of drug effects. An important focus is on pharma-
cogenetic modeling of drug effects, thanks to the availability 
of genome-wide association data, exome sequencing, DNA 
methylation, and –omic data. An interesting endpoint is the 
daily dose of drugs which are titrated by reference to clinical 
response, such as bradycardia to beta-blockers or hypoglyce-
mia to glucose-lowering medicines. Because the prescribed 
daily dose is known on each day of the follow-up, we can 
study genetic determinants for dose response.

Main findings in the last 3 years

During the past 3 years, pharmaco-epidemiologic studies 
were performed on the effects of several medicines with out-
come data from the Rotterdam Study, notably: statins; other 
cardiovascular drugs such as thiazides, beta-blockers, ACE-
inhibitors, and hypoglycemics such as metformin, insulin 
and sulfonylureas; antidepressants; benzodiazepines; and 
proton pump inhibitors.

Statins may cause myopathy and a GWAs demonstrated 
several SNPs associated with a higher risk of myopathy in 
an international consortium study [434]. Also, the HDL-
response to statins seems to have a genetic basis [435]. Fur-
thermore, studies were published on the association between 
statins and diabetes of which the risk was increased in users 
[436], and carotid plaque composition which was associ-
ated with a more calcified stabilized form while on statins 
[135]. On the other hand, anticoagulants increased the risk 

of intraplaque hemorrhage in carotid arteries [137]. In a 
comparison of the American ACC/AHA and European ESC 
guidelines for prescribing statins, considerable differences 
were found [437]. As for other cardiovascular drugs, GWAs 
were published on the pharmacogenetic determinants of the 
effects of ACE-inhibitors on serum potassium [438] and the 
risk of intolerance [439], and of the effects of thiazide diu-
retics on serum potassium [438], and the QT-interval [440]. 
Thiazides also proved to be associated with a lower serum 
level of magnesium [441]. In a meta-analysis of fall risk in 
elderly, non-selective beta-blockers were associated with an 
increased risk [442]. This was also the case with benzodi-
azepines of which the fall risk was associated with certain 
CYP2C9 genotypes [443]. Interesting results came from a 
meta-analysis in which several published candidate genes 
for the pharmacokinetics of metformin were tested for their 
hypoglycemic response in users. These candidate transporter 
gene variants had little contribution to variability in glyce-
mic response to metformin in type 2 diabetes [444]. How-
ever, the glucose transporter gene SLC2A2 was an exception 
[445]. One other GWAs with sulfonylurea hypoglycemics 
and their effect on QT, JT, and QRS-intervals showed 8 
novel loci with significant association after Bonferroni cor-
rection [446].

Furthermore, several studies were performed on the 
effects of antidepressants [447–454]. SSRI antidepressants 
were associated with a better subjective sleep [448] but 
with an increased risk of intracerebral microbleeds [454], 
decreased insulin secretion [450], and with a lower heart-
rate variability [453] but at variance with earlier studies not 
with a decrease of bone mineral density [449]. Interaction 
of variants in BRE and UBE2E2 with tricyclic antidepres-
sants were identified in relation to RR intervals while among 
Hispanic/Latinos, variants in TGFBR3 modified the relation 
between TCAs and QT intervals [452].

Also, we studied resistance to antibiotics [455–457]. Use 
of certain food constituents such as chicken, pork and cheese 
were associated with higher resistance to certain antibiotics 
[456], such as ciprofloxacin [455]. Antibiotics were associ-
ated with a prolonged disturbing effect on the microbiota 
[457].

Future perspectives

The Pharmacoepidemiology Unit follows a determinant-
focused research line. First, we investigate determinants 
for pharmacokinetic and pharmacodynamics effects of 
drugs on a population-based scale. These determinants are 
often genetic and include hypothesis-generating GWAs 
and hypothesis-testing candidate studies but include epige-
netic- and omic studies. Second, we take advantage of the 
wealth of very detailed information as gathered in the Rot-
terdam Study by the outcome-focused research lines such as 
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cardiovascular, locomotor and neurological epidemiology. 
This is possible because pharmacotherapy covers basically 
all disease outcomes and the sophisticated endpoints from 
other groups facilitate very subtle analyses of drug effects.

For additional EJE references please see [458–462].

Population imaging in epidemiology

Overall aim and focus area

Population Imaging entails the large-scale acquisition of 
medical images in controlled population-based cohorts, 
allowing to investigate structural and functional changes in 
the human body that may indicate early disease, can be used 
to identify persons at risk of developing disease, or may aid 
in disease prediction. An important focus for the population 
imaging research line within The Rotterdam Study relies 
on using imaging data to study etiology and prediction of 
neurodegenerative and cardiovascular diseases (including 
cerebrovascular diseases).

Key methods and data collection

Population imaging within the Rotterdam Study currently 
comprises brain MR imaging (multiple time points; more 
than 12,000 scans in over 8000 individuals), CT-assessed 
arterial calcification (2500 persons, follow-up imaging cur-
rently in progress), carotid MR imaging (over 1500 persons) 
and musculoskeletal imaging (knee MRI in over 800 sub-
jects). Since 2018, we are also performing brain amyloid 
PET CT (with a florbetaben tracer) in 700 Rotterdam Study 
participants. We apply automated computer algorithms to 
process all imaging data to extract relevant imaging features 
(e.g. volumetric assessments, but also more advanced meas-
ures such as white matter tractography or structure shape on 
brain MRI scans; or shear stress measurements on carotid 
MRI and calcification patterns on vascular CT). In 2020, we 
will start in a subcohort of 200 participants high-field brain 
MRI (7 T) to study cerebral small vessels in more detail.

Main results in the last 3 years

Normal brain aging still only sparsely understood, though 
it is an essential background to compare several age-related 
diseases against. We have written in the past 3 years several 
landmark papers which provide basic insight into struc-
tural and functional brain aging in the general population 
[463–466].

We have furthermore shown that white matter micro-
structure has added value over macrostructure in cognitive 
deterioration and that tract-specific regional deterioration 
of white matter in aging relates to cognitive performance 

[467], to risk of stroke [468] and to mortality [469]. This 
research is instrumental in changing our way of thinking of 
white matter as a ‘bulk substance’ into differentiated tracts 
with specialized functions in aging, and to understand that 
we need to study tract-specific changes in cognitive dete-
rioriation and dementia. This work was awarded the Stroke 
Innovation Award.

With respect to cerebral small vessel disease, we have 
shown that in the general population, cerebral microbleed 
presence relates to risk of stroke and dementia [470, 471], 
further strengthening the view of microbleeds as a ‘missing 
link’ between vascular disease and neurodegeneration.

In our vascular calcification research, essential pioneering 
work was done on the importance of intracranial arterioscle-
rosis, which was established as one of the most important 
risk factors of first-ever stroke [472] and a contributor to 
dementia and migraine. This work has been an important 
cornerstone for fueling novel studies, including population-
based studies and clinical studies in stroke patients (e.g. 
MR-CLEAN). We furthermore demonstrated that existing 
imaging-examinations (e.g. a coronary calcium CT-scan) 
contain a wealth of untapped information on other health 
parameters which yield additional information on the risk 
of cardiovascular disease [473].

With respect to carotid atherosclerosis and vulnerable 
plaque components on imaging, we have demonstrated 
recently that antithrombotic treatment relates to intraplaque 
hemorrhage [137] and that statin use seems to beneficially 
influence composition of carotid atherosclerosis by shifting 
towards more stable calcified plaque [135].

Future perspectives

Imaging in population-based studies is becoming ever more 
important in studying determinants of disease and in disease 
prediction. Non-invasive imaging techniques, such as MRI, 
enable us to detect increasingly subtle and early pathologic 
changes in asymptomatic individuals, tremendously enlarg-
ing our power and sensitivity to study common diseases, 
like stroke and dementia. In the coming years, we expect 
particular progress to be made by exploring the interrela-
tionship between structure and function of bodily tissues. 
Furthermore, advances in image processing, yielding quan-
tification of more and new markers and data-driven artifi-
cial intelligence research techniques (machine learning, deep 
learning) will bring the field of population imaging forward. 
Also, combining imaging with other high-dimensional data 
such as genomics, proteomics and metabolomics, is highly 
promising in unravelling pathways of disease and better 
understand disease pathophysiology. Finally, we will focus 
in the next years even more on the clinical relevance and 
prognosis of the imaging markers assessed in our cohorts.

For additional EJE references please see [474–477].
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